skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Miller, Ericka Roy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The simulation of excited states at low computational cost remains an open challenge for electronic structure (ES) methods. While much attention has been given to orthogonal ES methods, relatively little work has been done to develop nonorthogonal ES methods for excited states, particularly those involving nonorthogonal orbital optimization. We present here a numerically stable formulation of the Resonating Hartree–Fock (ResHF) method that uses the matrix adjugate to remove numerical instabilities arising from nearly orthogonal orbitals, and as a result, we demonstrate improvements to ResHF wavefunction optimization. We then benchmark the performance of ResHF against complete active space self-consistent field in the avoided crossing of LiF, the torsional rotation of ethene, and the singlet–triplet energy gaps of a selection of small molecules. ResHF is a promising excited state method because it incorporates the orbital relaxation of state-specific methods, while retaining the correct state crossings of state-averaged approaches. Our open-source ResHF implementation, yucca, is available on GitLab. 
    more » « less
    Free, publicly-accessible full text available March 14, 2026